Early modern architecture: Chicago, 1870-1910

Date
1940

Publisher
The Museum of Modern Art

Exhibition URL
www.moma.org/calendar/exhibitions/2050

The Museum of Modern Art's exhibition history—from our founding in 1929 to the present—is available online. It includes exhibition catalogues, primary documents, installation views, and an index of participating artists.
CONTENTS

BIOGRAPHIES of the leading architects page 2

CHRONOLOGY of the technical development of the skyscraper with an introduction page 7

CHRONOLOGY of the aesthetic development of the skyscraper with an introduction page 13

LIST OF PHOTOGRAPHS in the exhibition with comments on each page 17

Catalog of an exhibition held at The Museum of Modern Art, New York, from January 18 to February 23, 1933

Second edition, revised, March 1940
BIOGRAPHIES

JENNEY

Studied at Lawrence Scientific School. Graduated from Ecole Centrale des Arts et Manufactures in Paris, 1856, as engineer and architect. Engineer on Sherman’s and Grant’s staffs in the Civil War. Settled as architect in Chicago. Built Grace Episcopal Church, Union League Club, etc. but chiefly known for his commercial buildings. Generally considered the first to use steel skeleton construction. A technician rather than a designer.

Bibliography: "William LeBaron Jenney".
Photographs: 4, 5, 14

RICHARDSON

Henry Hobson Richardson. Born St. James Parish, La., 1838. Died Brookline, Mass. 1886
A.B. Harvard 1859. Worked and studied in Paris at the Ecole des Beaux Arts in the atelier of J. L. André and with Labrouste. Established himself after the Civil War as an architect
BIOGRAPHIES

Walter William Leighton Tenney. Born Winter

Studies at Lawrence Scientific School. Graduated from
the N.Y. College of Science, 1909, as Engineer and
Chief Engineer on Steamers and Great Lakes Steam
in the Great Lakes. Settled as Engineer in
Chicago and became Superintendent of the
Commercial Publishing. Generally considered
the father of the steel skeleton construction.

A technical letter from a 'Heather'...

Biography: "Walter William Tenney"

Architectural Record, Vol. 65, December 1940.

Photographs: A.E. 14

RICHARDSON

Henry Joseph Richardson. Born at Jamestown,
L. I., 1838. Died Providence, 1906.

A.B. Harvard, 1859. Worked and studied in Paris
et the Ecole des Beaux Arts in the matter of
7. P. French and with importance. Established
 himself after the Civil War as an architect.
first in New York and then in Brookline. His reputation was established by his design for Trinity Church, built in Boston 1872-77, based on Romanesque precedent. In his later work the importance of reminiscent elements of design grew less and less, but his originality as an architect was based on the integrity of his use of traditional construction rather than on technical innovations. To the new national architecture he contributed not methods of building but a formative spirit.

Bibliography: Henry Hobson Richardson & His Works, Mariana Griswold Van Rensselaer. Boston, 1883

Photographs: #7,8,9.

Studied M.I.T., 1873. Worked for a short while in the office of Furness and Hewitt in Philadelphia, and of Wm. LeBaron Jenney in Chicago. Studied from 1874 to 1876 at the Ecole des Beaux Arts in Paris, in the atelier of Vaudremer. Returning to Chicago he joined Adler's staff in
Life in New York and Plan in Proportion. His
testimony was unqualified by the great lot
Triumph Gathered Unite in Boston 1875-77. Passed
in Honorable Pecucant: In the later work
the importance of reminisce elements of ex-
seen and new ideas and less part the original
as epochs less based on the importance of in-
use of traditional construction rather than on
the new national st-
appreciation he contributed not methods of gain-
the part a lostlve spirit.

Philosophy: Henry Robert Hubbard & His Work

Museum-Central Van Remoent. Boston 1880
The Appreciation of H. R. Hubbard and His Work
Henry-Roomer Hubbard 40, New York. The Museum
of Modern Art, 1926

Procurements 1916, 1918

Chicago, 1924

Buried in Mt. I. T., Iowa. Worked for 20 years
in the office of Pomeroy and Hennig in Pitts-
burg, and of 1. H. Remoent tenancy in Chicago.

Established from 1875 to 1880 at the Horse Gas Plant
Alt in Peoria, in the center of Anderen. He-
rum to Chicago by Potter Walker, start in
1879 and was a full partner with Adler from 1881 to 1895. Sullivan's later associate, Elmslie, was never a partner and eventually left to work as an independent architect. Applying the basic stylistic discipline of Richardson's Marshall Field Wholesale Store (#7) to the new skeleton construction, Sullivan first found a dignified clothing for the skyscraper. In his work of the late eighties and early nineties his designs emphasized the vertical (#20). Soon, however, he found a more logical expression of the underlying construction with a scheme of wide windowed horizontality (#21,22). Sullivan led for two decades a considerable group of architects known as the Chicago School, but he alone made of the early skyscraper an aesthetic invention.

Photographs: #16, 17, 18, 19, 20, 21, 22, 23.

Dankmar Adler, Born in Langsfeld, Sachsen-Weimar, in 1844. Died in Chicago, 1900.

Came to America in 1854. Studied in Detroit with Julius Melchers, John Schaefer and Willard Smith, and in Chicago, 1857-62. First partnership with Kinney, 1869-71, with Burling, 1871-78.

Adler, during his partnership with Sullivan was never a designer.

Frank Lloyd Wright. Born Richland Center, Wisconsin, 1869, now living at Taliesin, Spring
In appreciation grants, Jonas M. Saffran, gallery
and introductions to Clarke Egan,. Contemp .
Supported by the early Jonas Saffran,
New York, press of the American Institute of
A critique of the work of Victor & Sullivan.
" "Great American Architects Series" No. 5. At-

Footnotes: 1. JH 16, 16, 60, 61, 62, 63.
Drawn after, born in Lauterly, Essex-Wennam,
In 1944, moved to America in 1965. Started to work with
Until their deaths, 1969-88. Their partnership with
After, working in partnership with Sullivan was
never a gestation.

Bibliography: Jonas Sullivan 19th Century of Modern
Architecture, Hugh Konsanen, New York, The
1989.

Frank Lloyd Wright, born 1867, died 1959, Conquest, "the
center," 1968, now finished at Taliesin, Spring
월

Adler
Green, Wisconsin.

Studied engineering at the University of Wisconsin, 1885-88. Worked in Chicago with Silsbee and then with Adler & Sullivan, 1889-94.

His independent practice began with the Winslow House (#33) in River Forest, Ill., 1892-93. By 1900 his new type of domestic design had developed far beyond that of the rest of the Chicago School. In his early work only should he be considered a disciple of Sullivan. His great innovations lie outside the field of this exhibition.

A bibliography of Frank Lloyd Wright can be found in Modern Architecture, a catalog published by the Museum of Modern Art in 1932.

Photograph: #33.

Studied in Chicago architects' offices including that of Peter Wright where he met Root.

John Wellborn Root, born Lumpkin, Ga., 1850.

Died Chicago, 1891. Graduated New York University, 1869. Worked in Renwick's office in New York, then went to Chicago after the fire of 1871, where in 1872 he met Burnham in Wright's office,
and formed a partnership with him the next year. This firm was responsible for the development of the highly organized and specialized American architectural office and methods of practice. Until Root's early death he was one of the more original Chicago Richardsonians. The prolific work of the firm beginning with the general supervision of the World's Fair was rarely original or distinguished in design.

Photographs: #10, 11, 12.

and formed a partnership with him the next year.

This firm was responsible for the development of the highly organized and specialized aspect of the art and website

of the most prominent artists and architects of the time. Until Root's early death, he was one of the

core architects of Chicago's Renaissance. The firm's notable works include the

general supervision of the Wright's plans for

Woodward House, Wright's Monroe, Boston, 1886.

Photograph: 410, II, 15.

William Holabird. Born Amosville, Ohio, 1864.

Died Evanston, III., 1939. Resided from 1895

Point and worked with Jansen as engineer after

1893. Formed partnership with C. O. Strum in

1898.

Merrill Hedges. Born Cleveland, Ohio, 1863. Died

Chicago, 1898.

Brought to Chicago 1887. Entered General's office

in 1895. Joined Holabird & Roche in 1897.

After some time in 1888, the firm became

Holabird & Roche.

Photographs: #6, 24.

The tall commercial building, early labeled the skyscraper, was the most conspicuous achievement of American architecture in the second half of the nineteenth century.

In the creation of the skyscraper several complementary lines of technical development joined. First, in the fifties, iron skeleton construction was often used to replace masonry bearing walls, sometimes in the interior of the building, sometimes as an ornamental cast iron facade. Then, with the introduction of the elevator, buildings higher than six stories became convenient and acceptable. At the same time, methods of fireproofing the metal skeleton were invented in New York, and effective pier foundations developed in Chicago. Finally, in Chicago, by the late eighties, the protective masonry shell came to be carried by the metal framework, in which Bassman steel replaced cast and wrought iron. The skyscraper, imminent for more than a generation, thus became an actuality.

CHRONOLOGY OF THE TECHNICAL DEVELOPMENT OF THE SKYSCRAPER

The tall commercial building, early labelled the skyscraper, was the most conspicuous achievement of American architecture in the second half of the nineteenth century.

In the creation of the skyscraper several complimentary lines of technical development joined. First, in the fifties, iron skeleton construction was often used to replace masonry bearing walls, sometimes in the interior of the building, sometimes as an ornamental cast iron facade. Then, with the introduction of the elevator, buildings higher than six stories became convenient and acceptable. At the same time, methods of fireproofing the metal skeleton were invented in New York, and effective pier foundations developed in Chicago. Finally, in Chicago, by the late eighties, the protective masonry shell came to be carried by the metal framework in which Bessemer steel replaced cast and wrought iron. The skyscraper, imminent for more than a generation, thus became an actuality.

CONCLUSION OF THE TECHNICAL DEVELOPMENT OF THE EXPERIMENT

The fall commercial publishing extra declared the only

Doubler, was the most comprehensive development of American

sciences, in the second half of the nineteenth century.

In the creation of the Electroscope several comity-

sents under the control of scientific development. First, in the

tally, from the time of construction was often very for the

instrument of the natural science, sometimes in the attention of the vitality

the, sometimes as an instrument as from those. Then, with

the introduction of the scientific, continuing higher from six

natures become conscious and acceptable in the same time.

New York's and effective their combination developed in Chicago.

Firstly, in Chicago, the face appears the prototype

mission of shell came to be critical by the metal technology.

The which possesses great reliability as any woodwork from

mysterious, important for more than a generation, this became

an actually.

Philosophers: "Motion and the Electroscope," "E. M. Jenius,

Dr. L. A.

was the first introduction of fabrication. Construction.

Toomer's "Engineering the Construct,"

Vol. 16, No. 8, August 1926, p. 18-19.
1848 Bogardus Building, Duane Street, New York, by Bogardus. Now demolished
First use of cast iron facade.
1851 Crystal Palace, Hyde Park, London, by Paxton
Destroyed by fire, 1936
First structure entirely of iron and glass.
1851-65 Dome of Capitol, Washington, D.C., by Thomas U. Walter
Built of cast iron.
1853 New York Crystal Palace (in imitation of Paxton's)
Now demolished
First passenger elevator in America.
1854 Harper's Building, Franklin Square, New York
Now demolished
Introduction of wrought iron girders.
1855 Invention in England of Bessemer's converter for producing superior wrought iron known as "Steel".
1859 Fifth Avenue Hotel, New York
Now demolished
Passenger elevator first used in a permanent building.
1862 Siemens' invention in Germany of the Open Hearth Process for steel.
1868 Equitable Life Assurance Society Building, Broadway, New York. Now demolished
First office building with elevator.
1871 Fire-resistant hollow-tile floor for use with wrought iron beams patented by Balthasar Kreischer.

1873 Introduction into America of Bessemer steel by Carnegie.

1880 Price of land in Chicago Loop district reaches $130,000. per quarter acre, thus encouraging higher buildings. Compare 1890.

1881 Buffington's dreams of metal "cloud-scrapers" based on Viollet-le-Duc's ideas.

1881 Montauk Building, Chicago, by Burnham & Root

Introduction of separate spread foundations for separate piers.

1884-85 Home Insurance Building, Chicago, by Jenney

Demolished, 1931

Usually considered the first skyscraper. Weight carried largely by framework of cast and wrought iron concealed inside the masonry. Bessemer steel beams first used here above the sixth floor.

1886 Rookery Building, Chicago, by Burnham & Root

Same construction as Home Insurance Building. New type of foundation of railroad steel in concrete.

1887-88 Tacoma Building, Chicago, by Holabird & Roche

Demolished, 1929

Often considered the first skyscraper. All the structural potentialities of metal frame construction are implicit, but the iron skeleton is called upon to carry less than half the weight of the building.

1888-89 Pulitzer Building, New York, by George B. Post

At the time of its erection, the highest building in the world (349 feet). Masonry walls; interior piers of cast iron.
1889 Tower Building, New York, by Bradford Lee Gilbert
Now demolished
First use of metal skeleton of true skyscraper type in New York.

1889 Rand-McNally Building, Chicago, by Burnham & Root
Rolled steel beams and columns of standard bridge shapes riveted together as still used today.

1889-90 Second Leiter Building, Chicago, by Jenney
First building in which all the walls are supported by the internal metal skeleton.

1890 Monadnock Block, Chicago, by Burnham & Root
Last tall building with solid masonry bearing walls. Sixteen stories.

1890 Price of land in Chicago Loop district $900,000 per quarter acre. Compare 1880
High buildings encouraged by high land values force land values ever higher.

1891 "Skyscraper - a very tall building such as now are being built in Chicago" - Maitland's American Slang Dictionary
Original design in the skyscraper did not keep pace with new developments in construction. The facades of the early experimental buildings in the late seventies and eighties (#4 especially), although often more honest in the expression of skeleton construction than many more modern buildings, were appallingly crude. Yet it was their frank emphasis on wide-windowed horizontality that fore-shadowed such developed skyscraper design as in the Schlesinger-Mayer Building (#22) and Gage Building (#23).

But the building which initiated a new spirit in commercial design was Richardson's masonry Marshall Field Wholesale Store (#7). Deriving at first his inspiration from the Romanesque, Richardson in his later work reached a highly original and pure expression of masonry construction adapted either to residence or commercial design. The Marshall Field Wholesale Store provided for the young Chicago architects an aesthetic discipline of regularity and simplicity from which Sullivan rapidly created a new personal style.

The influence of Sullivan's style was so great that it attracted a group of young architects who formed under his leadership the Chicago School.

The free non-traditional architecture of the Chicago
CHRONOLOGY OF THE AESTHETIC DEVELOPMENT OF THE SYLVESTER

original gesture in the sylvester did not keep pace
with new developments in construction. The traces of the
earlier experimental mutilations in the late twenties may
still be felt, even more now in the
expression of exertion. The exertion of exertion, then many more modern
expression, were especially strong. Yet if we start from
compositions on the window-patio originally those for
such developments sylvester gesture as in the sylvester-fan.

But the sylvester with initiation was the subject to com-
mon reduction. Reduction in the later work became a height
homogeneity. Reduction in the later work became a height.
expression of exertion or commotion construction shifted
alteration and hence expression of commotion. The sylvester-fan
shifted more power bringing to the same children to
expressions of exertion of commotion, and specifically from which
sylvester-fan created a new personal style.
The influence of sylvester's style was so great that
it suggested a group of young architects who formed under the
leadership of the Chicago School.
The free non-committal expression of the Chicago
School retained its vigor until about 1910 when the stylistic revivalism which had made its first striking appearance in Chicago with the World's Fair of 1893, vitiated its force.

1877: Leiter Building I, Chicago, by Jenney.
Non-stylistic expression of mixed masonry and cast iron construction.

Further simplification of the Richardsonian Romanesque.

The masterpiece of early commercial architecture in masonry.

1886: The Rookery, Chicago, by Burnham & Root.
Unintelligent application of Richardsonian Romanesque. Uninfluenced by Marshall Field Wholesale Store.

1888: Bray Building, Boston, by Richardson.
Furthest development of Richardson's commercial style. Shallow reveals and light spandrels at story levels.

General scheme uninfluenced by masonry design, though detail is slightly Richardsonian.
School meeting the new order since about 1930 when the striking
renewal work had made the Kress anti-Kremlin appearance in
Chicago with the World's Fair of 1933, assisted the loco.
1874-75 Cheney Building (now Brown-Thompson Co.), Hartford, Conn., by Richardson.

A personal interpretation of Romanesque design applied to commercial architecture.

1879 Leiter Building I, Chicago, by Jenney.

Non-stylistic expression of mixed masonry and cast iron construction.

1882 Ames Building, Kingston and Bedford Sts., Boston, by Richardson. Replaced in 1892.

Further simplification of the Richardsonian Romanesque.

The masterpiece of early commercial architecture in masonry.

1886 The Rookery, Chicago, by Burnham & Root.

Unintelligent application of Richardsonian Romanesque. Uninfluenced by Marshall Field Wholesale Store.

1886 Fray Building, Boston, by Richardson.

Furthest development of Richardson's commercial style. Shallow reveals and light spandrels at story levels.

1887-88 Tacoma Building, Chicago, by Holabird & Roche. Demolished, 1929.

General scheme uninfluenced by masonry design, though detail is slightly Richardsonian.
A personal interpretation of Romanesque origin

Letter Building in Chicago, by Denny

Non-rhythmic expression of mixed mass and

case from construction

Wheel Building, Ill. Press, 1889

Revisited in 1890

Further simplification of the Richardson

Romanesque

Revised "Fieldstone Store" Chicago

The versatility of early commercial architecture

The Rockery, Chicago, by Burnham & Root

Universal application of Richardson

Romanesque, universal by material, field stone

 spite

Revolutionary, 'Chicago, by Burnham & Root

Further development of Richardson's commercial

style. Second revision of high spandrels and

stain layers.

Teasom Building, Chicago, by Holabird & Roques

Damaged, 1896

Overall summary of influence of Romanesque art
1887-89 Auditorium Building, Chicago, by Adler & Sullivan.

Strongly under the influence of Richardson's masonry Marshall Field Wholesale Store. In the tower appear the beginnings of Sullivan's more personal expression. Compare Walker Warehouse (#18).

1889-90 Leiter Building II, Chicago, by Jenney.

A direct development from Jenney's first Leiter Building (#4) in its clear expression of structure. Influenced in detail and general sense of form by the Marshall Field Wholesale Store.

1890-91 Monadnock Block, Chicago, by Burnham & Root.

Rigidly simplified masonry design with Richardsonian sense of form.

1891-92 Wainwright Building, St. Louis, by Adler & Sullivan.

Sullivan's vertical type of skyscraper design here fully developed for the first time. Compare Schiller Building (#20).

1893 Meyer Building, Chicago, by Adler & Sullivan.

Sullivan's more logical horizontal type of skyscraper design preserving wide fenestration of Jenney's Leiter Building I (#4).

Further development of wide-windowed design, with narrow supports and spandrels veneered with terra cotta.

1900-10 The heyday of the Chicago School under the inspiration of Sullivan's work of the previous decade.
LIST OF PHOTOGRAPHS WITH COMMENTS

1. 33 SOUTH FRANKLIN STREET (corner of Monroe Street), Chicago. c. 1872.
 This building retains the dignity and good proportions of the Classical Revival. The simple masonry post and lintel construction is clearly expressed in the design. Cast iron posts are used only in certain bays on the ground floor.

2. 221-227 WEST RANDOLPH STREET, Chicago. 1880.
 Unusually large window area for masonry construction. Cast iron posts on the ground floor only. The elegance of extreme simplicity is still reminiscent of the Greek Revival.

3. WILLOUGHBY BUILDING, Jackson and Monroe Streets (north-east corner) Chicago. 1884.
 Structurally a great advance: the use of wrought and cast iron instead of masonry walls permits building higher without sacrificing light on the lower stories. The peculiar ornament is ambitious in its originality, but no more appropriate to the new material than traditional forms.

4. WILLIAM LE BARON JENNEY
 LEITER BUILDING I, 200 West Monroe Street, Chicago. 1879. Two stories added later.
 An important step toward the skyscraper: the use of cast iron posts between the masonry piers introduces more light. The design is crude, but the general horizontal
LIST OF PHOTOGRAPHS WITH COMMENTARY

6. 30 SOUTH FRANKLIN STREET (corner of Monroe Street). Chicago. 1889.

The building retains the dignity and form proportionate to the class of the Revue. The simple masonry work and finish of construction is clearly expressed in the gable. Care has been taken to place the main door only in certain parts of the main floor.

8. 851-859 WEST RANDOLPH STREET. Chicago. 1886.

Usually large windows were for masonry construction. Care has been taken on the lower level only. The elegance of extreme simplicity is still reminiscent of the Greek Revival.

5. WILLIAMSBURG BUILDING. Jackson and Monroe Streets (North). Chicago. 1885.

Structurally a great advance: the use of masonry and cast iron. Panel construction. The lower stories of the lower stories. The design with ornamentation is applied to the ornamentation, and no more appropriate to the new material than classical. Chicago.

WILLIAM E. BROWN, ARCHITECT

LITTELL BUILDING. 300 W. Monroe Street, Chicago. 1897.

Two stories behind. The use of cast iron. The gable is simple, but the general ornamentation from parts between the masonry plates introduces more light. The gable is simple, but the general ornamentation
ordering foreshadows the more finished designs of the later steel skyscrapers. Compare with the Schlesinger-Meyer Building (#22).

5. WILLIAM LE BARON JENNEY
HOME INSURANCE BUILDING, Chicago. 1884-85. Two stories added, 1890. Demolished, 1931.

The crucial step in the creation of the skyscraper. The metal skeleton supports all the weight of the building except the exterior masonry walls which are partially self supporting. Above the second floor in the masonry piers between the windows are iron columns which strengthen the piers. This added strength makes it possible to diminish the width of the piers and increase the width of the windows. Part of the weight of the exterior masonry is carried by the metal frame. In principle the building has ceased to be a crustacean (chief support by masonry shell) and is already implicitly a vertebrate (chief support by skeleton, including support of exterior walls). Jenney did not yet realize the revolutionary quality of the device he had employed above the second floor.

For the first time in America, Bessemer steel is introduced in place of wrought iron above the sixth floor. The importance of the building lies entirely in the construction, not in the design.

6. HOLABIRD & ROCHE

Often considered the first true skyscraper. The outer walls, instead of supporting the building, were designed
YBvtmx mu€ 3J -.auiw

CtaoE • ni ?oci t hnooa sxt; svo<fA jnitroqq^a 11 ae

r1 • ; enms/Io' aoxr ata mo bairn ?M ne&w$&6 stale

"riJ lo ic j-cal . awofatlw 941 to 4£&£w

©Js-xoed-iav vi..; • oxXqmj ^fcaetl# al bni: (Xiarfa {tnosm

flicixle &ric: ovoda not! M^otw lo eoslc nl teox/6
from the first to be supported by the skeleton. But there are still important masonry bearing walls. The skeleton, though more developed than that of the Home Insurance Building, is called upon to carry less than half the actual weight of the building.

The ornament is reminiscent of Richardson, but the general design, unlike that of the Home Insurance Building is light and does not give the impression of masonry bearing walls. Like the first Leiter Building this represents a straight-forward if undistinguished expression of a new type of construction.

7. H. H. RICHARDSON
MARSHALL FIELD WHOLESALE STORE, Chicago. 1885-86. Demolished 1930.

The masterpiece of commercial architecture in masonry, and the strongest single influence on the design of Chicago commercial architecture of the next generation. Even when this influence was no longer direct, the aesthetic discipline of regular and simple design continued.

8. H. H. RICHARDSON
GLESSNER HOUSE, 1800 South Prairie Avenue, Chicago. 1885.

Here, as in the Marshall Field Wholesale Store, Richardson generalized and recreated the traditional elements of design which he had earlier borrowed directly from the Romanesque. The disposition of the plan with the main rooms opening toward the court rather than toward the street is unusual in America.
The approach is reminiscent of Home Insurance, for the reason that the model tells the feature of Home Insurance building, where the rose garden not have the expression of Masonry. The feature tells the feature local planning, if multi-residential expression of a new type of construction.

H. H. Richardson
Marshfield Wholesale Store, Chicago. 1883-86
Demolished 1930

The masterpiece of commercial architecture in Chicago, and the outstanding single influence on the generation of Chicago commercial architecture of the next generation. Even when the influence was no longer direct, the aesthetic effect of the rose garden and simple gable continues.

H. H. Richardson
Ollis House 1600 South Prairie Avenue, Chicago. 1885

Here, as in the Merchants' Field Wholesale Store, Richardson generalized and reordered the traditional elements of the gable motifs in his earlier, dominant Italianate houses. The disposition of the plan with the main rooms opening toward the court rather than toward the street is unusual in America.
9. H. H. RICHARDSON
McVEAGH HOUSE, Chicago. 1885. Demolished.

Less original than the Glessner House, this house by Richardson is nevertheless superior to most work of the Richardsonians of the eighties. Compare Art Institute (#10).

10. BURNHAM & ROOT
ART INSTITUTE (Later THE CHICAGO CLUB), Chicago. 1886-87.

Root here attained some of the regularity and dignity of Richardson's work. The dormers, banded arches and profusion of ornament derive from Richardson's more archaeological work of the seventies rather than from the Marshall Field Wholesale Store (#7) and the Glessner House (#8).

11. BURNHAM & ROOT
FIRST INFANTRY ARMORY (Now 131st INFANTRY ARMORY), South Michigan Ave. at Sixteenth Street, Chicago. 1890. Rebuilt after fire, 1894.

The contrast of tiny windows and colossal portal, the avoidance of fussy detail, and the fortress-like scale of the whole illustrate the possibilities of the free traditional design which existed in Chicago before the World's Fair. The medievalism is hardly Richardsonian but rather that of the projects of the early nineteenth century in France.

12. BURNHAM & ROOT
MONADNOCK BLOCK, 53 West Jackson Street, Chicago. 1891.

This entirely unornamented building is the last tall structure with masonry bearing walls. In spite of its
RICHMOND & ROOT

To the Institute (Later the Chicago Club), Chicago, 1885-94.

After the failure of the firm, Root continued to be associated with the Chicago firm of George Tracey.

In the early years, the designs were simple and functional, with a strong emphasis on symbolism and the use of traditional elements.

The firm's work was characterized by a strong emphasis on the integration of art and architecture. They believed that architecture was not just a means of shelter but also a means of expression and communication.

In 1887, the firm designed the Monadnock Building in Chicago, which is considered one of the first skyscrapers in the world. The building was constructed with steel framing and brick cladding, a combination that allowed for the creation of a tall, thin structure.

The firm's later work was marked by a more dramatic use of materials and forms, with a greater emphasis on the use of glass and steel.

In 1891, the firm designed the St. Francis Hotel in Chicago, which was one of the first hotels to be built specifically for the railroad trade.

The firm's legacy is marked by their innovative approach to architecture and their contribution to the development of the skyscraper.
great originality, this design could hardly have been evolved without the precedent of the Marshall Field Wholesale Store (#7).

13. **BURLING & WHITEHOUSE**
200 WEST ADAMS STREET, Chicago. c. 1892.
Although this building is Richardsonian in general design, the absence of arches, the unusual cornice and the curved brick corners give it original character.

14. **WILLIAM LE BARON JENNEY**
LEITER BUILDING II (Now SEARS ROEBUCK & CO.) southeast corner of State and Van Buren Streets, Chicago. 1889-90.
A direct development from Jenney's first Leiter Building (#4) in its clear expression of structure. The detail, however, and the general proportioning show the influence of the Marshall Field Wholesale Store (#7).

15. **GEORGE B. POST**
PULITZER BUILDING, Park Row, New York. 1889-90.
Although at its completion the tallest building in the world (349 feet), this New York tower is progressive neither in structure nor design. It has masonry bearing walls on the exterior, 12 feet thick at the base, and only the interior is supported on wrought iron columns. Yet the Home Insurance and Tacoma Buildings had been completed several years earlier.

The conventional scheme of academic Renaissance design (the dome of the Invalides has been placed on top of the Louvre) is characteristic of the Eastern architecture of
...
this period, and is inappropriate and devoid of scale. Compare the second Leiter Building (#14) built in the same year in Chicago.

16. ADLER & SULLIVAN
AUDITORIUM BUILDING, Michigan Avenue at Van Buren Street, Chicago. 1887-89.
The treatment here of the masonry bearing walls shows strongly the direct influence of the Marshall Field Wholesale Store (#7). The lower portions have been influenced by the Marquis de Vogüé's publications on early Syrian architecture. Only in the tower appears the beginning of Sullivan's more personal style.

17. ADLER & SULLIVAN
BALLROOM, AUDITORIUM BUILDING, Michigan Avenue at Van Buren Street, Chicago. 1889.
A monumental interior which reveals Sullivan's power of original design in a field totally different from the office buildings which made his fame.

18. ADLER & SULLIVAN
WALKER WAREHOUSE, Market Street between Adams and Quincy Streets, Chicago. 1888-89.
Here the flatter surfaces and the more vertical grouping indicate the direction Sullivan's manner was to take as it freed itself from the influence of Richardson.
A monument erected which reveres Sullivan's power of office buildings which make his name.

WATERER, WAREHOUSE, Market Street between Adams and Crafts Street, Chicago, 1886-88.

Here are the tallest structures and the most massive and inspiring of the influence of Sullivan's manner was to take its lead from the influence of Richardson.
19. ADLER & SULLIVAN
ANSHE MAARIV SYNAGOGUE (Now PILGRIM BAPTIST CHURCH),
southeast corner of Indiana Avenue and 33rd Street,
Chicago. 1890-91.

An interior, simple in general design, but lavishly orna-
mented with the delicate geometric and foliate patterns
so characteristic of Sullivan's later work. In this in-
terior the ornament is a gracious element in the design;
on his office buildings, on the other hand, it is often
incidental and redundant.

20. ADLER & SULLIVAN
SCHILLER BUILDING, (Garrick Theatre) 64 West Randolph
Street, Chicago. 1891-92.

An example of Sullivan's vertical skyscraper design. The
scheme developed in the Wainwright Building of the pre-
vious year in St. Louis is applied to the shell of a metal
skeleton building. The prominent cornice is a feature
which appears in many of Sullivan's buildings.

Note: In the foreground is the Borden Block, 1880, de-
signed by Sullivan when he was a junior partner
in D. Adler & Company.

21. ADLER & SULLIVAN
MEYER BUILDING, southwest corner of Van Buren and
Franklin Streets, Chicago. 1893. Cornice removed.

In this building the horizontal type of design provides
more logical expression of the underlying structure than
the vertical treatment of the Schiller Building (#20).
The wide windows preserve the practical advantages of
An interior, simple in general decoration, but lavishly ornamented with the flowing decoration and motifs peculiar to the Art Nouveau style. The decorative elements in the Art Nouveau style are evident in the ceiling of the office building, on the office windows, and in the detailing and ornamentation.

MILLER & MILLER

MILLER BUILDING (Curtice Teed) 50 West Randolph

Chicago, 1897-98

An example of Sullivan's avant-garde style of the early 1890s, the Millier Building stands as a testament to the aesthetic of a new era. Its influence is apparent in many of Sullivan's subsequent designs.

MILLER & MILLER

MILLER BUILDING Southwestern corner of Van Buren and

Franklin Streets, Chicago, 1899. Concrete and steel, 6 stories, 36 feet square.

In this building, Sullivan demonstrated the potential of the steel-frame structure for office buildings, providing a more flexible expression of the underlying structure than was possible with wood-frame construction. The vertical treatment of the windows is a prelude to the Prairie Style.
increased light achieved in the first Leiter Building (#4).

22. LOUIS SULLIVAN
SCHLESINGER-MEYER BUILDING (Now CARSON PIRIE SCOTT & CO.)
State and Madison Streets, Chicago. First section 1899.
Second section 1903-04.
A further development of the horizontal window treatment.
The sense of an exterior wall has disappeared. There re-
mains only a grille of vertical columns and horizontal
beams, sheathed in terra cotta for fireproofing. The or-
namental incrustation on the lower stories is typical of
Sullivan.

23. LOUIS SULLIVAN
GAGE BUILDING, 18 South Michigan Avenue, Chicago. 1899.
Note: Only the facade on the right (Gage Building) is by
Sullivan. The two facades on the left as well as the
structure of all three buildings are by HOLABIRD & ROCHE.
The structure of all three buildings is clearly revealed
in the facades. The difference between Sullivan's facade
and the other two is that between the studied proportions
of fine architecture and ordinary structural honesty.

24. HOLABIRD & ROCHE
CABLE BUILDING, southeast corner of Jackson and Wabash
Streets, Chicago. 1899.
The Chicago formula of skyscraper design used without
great distinction. But even such ordinary Chicago work
is more significant than the architectural revivalism
then current in the eastern United States.
increased light sources in the first floor building.

28. Louis Sullivan

Second floor of the Larkin Company Building, Buffalo, N.Y. 1898.

The curve of an expertly made glass being. Their use in a building of this type is a novel one.

29. Louis Sullivan

Second floor of the Larkin Company Building, Buffalo, N.Y. 1898.

Note: Only the facade of the First (First Building) is preserved. The facade, Second story facade of the Larkin Company Building, is preserved. The facade of the Larkin Company Building is preserved. The facade of the Larkin Company Building is preserved.

30. Holbrooke & Rockefeller

The Chicago Romanesque by Holbrooke & Rockefeller. 1898.

Greater attention is given to the subtleties of proportion. The facade of the Larkin Company Building is preserved. The facade of the Larkin Company Building is preserved. The facade of the Larkin Company Building is preserved.
25. **FLANDERS & ZIMMERMAN**
MALLERS WAREHOUSE, 225 South Market Street, Chicago.
1893. Cornice removed.

A further development from the Tacoma Building (#6) toward the clear expression of new skeleton construction, but without the influence of Sullivan. All ornament is eliminated with the exception of incongruous detail on the doorway.

26. **D. H. BURNHAM & COMPANY**
RELIANCE BUILDING, southwest corner of State and Washington Streets, Chicago. 1894.

The last building of the type of the Tacoma Building (#6). The wide fenestration provides better lighting than the great majority of present day office buildings.

27. **RICHARD E. SCHMIDT**
NEPENNAUK BUILDING, 63 East Adams Street, Chicago. 1903.

A fine example of the work done by the younger men who, under Sullivan's influence, constituted the Chicago School.

28. **ADLER & SULLIVAN**
CHARNLEY HOUSE, 1365 Astor Street, Chicago. 1892.

This is the finest of the few houses built by Sullivan. A large part of the design is due to the young Frank Lloyd Wright, then in charge of all the domestic work done in Sullivan's office. Without the stimulus and discipline of the new skeleton construction Sullivan's style was characterized chiefly by simple dignity and a new grammar of ornament. His domestic building was distinguished, but not as significant as his skyscrapers.
A further development from the Tacoma building (p. 5) was the clear expression of new structural construction, put without the influence of Sullivan. All ornament is eliminated with the exception of innocuous griffiti on the canopy.

The ideal.

SE. H. BURRUM & COMPANY
RELIEF BUILDING, southwest corner of State and Wasp.
Ingenious theatre Chicago 1897.

The ideal pattern of the type of the Tacoma building
(SE). The wide transom provides better lighting.
Can the great majority of present day office buildings
reach Sullivan's influence, considering the Chicago
School.

SE.
RICCHARD E. SCHMIDT
INDEPENDENT BUILDING, 530 Adams Street, Chicago. 1902.
A fine example of the work done by the younger men who
under Sullivan's influence, contributed the Chicago
School.

SE.
ADLER & SULLIVAN
CHAMBERY HOUSE, 1133 Dear Street, Chicago. 1888.
This is the interior of the few houses built by Sullivan.
A large part of the gabled is due to the house taken
looking at the house, a notable work.

SSE.
DIEU & SULLIVAN
MALTRES & STIMMEY
1935, South Market Street, Chicago.

This is not as significant as the previous.
29. GEORGE MAHER
FATTEN HOUSE, 1426 Ridge Avenue, Evanston, Illinois. 1902.
A house by a member of the Chicago School which followed Sullivan's artistic leadership. The houses of this group, although they introduced few innovations, established a standard in non-traditional domestic architecture by their simplicity and dignity and by their careful use of materials and detail.

30. RICHARD E. SCHMIDT, GARDEN & MARTIN
SEILZ, SCHWAB & CO., northwest corner of Kingsbury and Superior Streets, Chicago. 1907.
This factory has real architectural quality based only on the character of the ferro-concrete structure. At this early date a factory at once so simple and so well studied in its proportions was a rarity in America.

31. RICHARD E. SCHMIDT, GARDEN & MARTIN
HUMBOLDT PARK PAVILION, Chicago. 1908.
The use of the style of the Chicago School in a decorative public building indicates the extent of the acceptance of non-traditional architecture at the opening of the century.

32. DWIGHT H. PERKINS
CARL SCHURZ HIGH SCHOOL, 3601 Milwaukee Avenue, Chicago. 1910.
This building owes little specifically to Sullivan. But it indicates the ability of the members of the Chicago School to find a new type of design for new problems.
A house by a member of the Chicago School which followed Sullivan’s example introduced few innovations, especially in non-structural homeostasis and their simplicity and dignity and in their careful use of materials and detail.

RICHARD E. SCHMIDT, GARDEN & MARTIN
30.
SEIL "SCHWAB & CO." NORTHWEST CORNER OF KINGStreet and SUPERIOR STREET. CHICAGO 1907.

This lesson was least architecturally dignified. It was only the experience of the late-concrete structure. At this early stage a section of one to two stories and of well-defined proportions was a rarity in America.

RICHARD E. SCHMIDT, GARDEN & MARTIN
31.
HUMBOLDT PARK PAVILION. CHICAGO 1909.

The use of the style of the Chicago School in a concrete structure was to indicate the extent of the performance of non-structural homeostasis of the opening of the century.

Dwight N. Perkins
CARL SCHURZ HIGH SCHOOL, 867 MICHIGAN AVENUE
CHICAGO. 1910.

This building was built specifically to Sullivan. It incorporates the ability of the members of the Chicago School to design a new type of building for new problems.
Especially in such a school is the superiority of their inventions over the archaeology of the stylistic revivalists clear.

33. FRANK LLOYD WRIGHT
WINSTON HOUSE, Lake Street, River Forest, Illinois, 1892-93.

This, Wright's earliest important independent building, shows him still a disciple of Sullivan. Early in the 1900's he set out on new paths independent of the general Chicago School. Leaving the field of commercial building, he created a new domestic style which was to affect the course of modern architecture profoundly.
Especially in such a school as the experimental or the experimental art school.