Modern architecture U.S.A

Date
1965

Publisher
The Museum of Modern Art

Exhibition URL
www.moma.org/calendar/exhibitions/3464

The Museum of Modern Art’s exhibition history—from our founding in 1929 to the present—is available online. It includes exhibition catalogues, primary documents, installation views, and an index of participating artists.
MODERN ARCHITECTURE U.S.A.

PRESENTED BY THE MUSEUM OF MODERN ART AND THE GRAHAM FOUNDATION FOR ADVANCED STUDIES IN THE FINE ARTS
MODERN ARCHITECTURE U.S.A.
presented by The Museum of Modern Art and
The Graham Foundation for Advanced Studies
in the Fine Arts

This exhibition reviews sixty-five years of modern
architecture in the United States. Some of the
buildings shown are unique masterpieces; others
are primarily of historical significance. Some
buildings are shown because they launched an
idea; others because they carried an idea to its
conclusion. All of them remind us that archi-
tectural excellence has many forms.

The exhibition begins with an early work by
Frank Lloyd Wright, illustrating some character-
istics of his architecture much admired in Ger-
many and Holland. What follows is the emergence
in the twenties of a new architecture for an
industrialized world. Its principles were meant to
be internationally valid, but its European aspects
were emphasized at the end of the thirties when
refugees converging on the United States, made
major changes in the teaching of architecture
as well as its practice.

The postwar building boom provided ample
opportunity for contending schools of thought,
but through the late forties and most of the
fifties the American imagination was dominated
by the inspired method of Ludwig Mies van der
Rohe. The great French architect Le Corbusier
has been an acknowledged influence everywhere
since the twenties, and in recent years his use
of complex sculptural form has coincided with a
worldwide restlessness—a suspension of dogma
that has led to new freedom as well as disorder.

Throughout this American story Frank Lloyd
Wright appears in numerous guises. His work
may be called a sustained explosion. Aspects of
his architecture once rejected as naive—mass
and solidity for example—again seem relevant
and curiously "modern."

Younger generations of architects are now
building with brilliance and virtuosity. Indeed,
modern architecture in the United States abounds
with distinguished buildings and more than a
few masterpieces. But however splendid this
achievement may be, it does not begin to cope
with the great problems of urban planning—not
because architects have been unwilling to do so,
but because the social and economic procedures
that would make their ideas a reality do not yet
exist. There are other problems as well: we do
not yet have an effective means of preserving
important buildings, and we have not yet edu-
cated all our public officials to a just apprecia-
tion of what building as an art can do to enhance
our lives. But we can look forward to finding
solutions to these problems that will rival and
perhaps surpass our recent achievements.

Arthur Drexler
Frank Lloyd Wright
Unity Church. 1906.
Oak Park, Illinois.
Blank-walled stair towers and a massive hovering roof are in scale with the material—poured concrete with exposed pebble aggregate. Interwoven spaces and abstract decoration produce one of Wright's best interiors, but the composition is more impressive today for its "new" sense of monumentality.

Greene and Greene
Blacker House. 1907.
Pasadena, California.
Like the Japanese, Greene and Greene made wood construction the basis of architectural form. Massive wood members in this entrance hall define space with ornamental details.

Irving Gill
Wilson Acton Hotel. 1908.
Irving Gill
Wilson Acton Hotel, 1908.
La Jolla, California.

The Spanish Mission style bolstered Gill's preference for unadorned cubic masses. Rear elevation of this hotel anticipated European dogma proscribing decoration.

Frank Lloyd Wright
Robie House, 1909.
Chicago, Illinois.

Characteristics of Wright's early "Prairie houses"—extended horizontal planes and masses; relatively open interiors; bold cantilevers—are here adapted to an urban site. Subtleties of scale help make the Robie house a masterpiece, though in the same year Wright used forms still more abstract and obviously "modern".
Frank Lloyd Wright
Freeman House. 1924.
Los Angeles, California.
During the twenties Wright developed a technique for building with cheap concrete block. Cast in decorative geometric patterns that are often too coarse, they still suggest a form open for adaptation.

Rudolph Schindler
Lovell House. 1926.
Newport Beach, California.
Austrian-born and briefly associated with Wright, Schindler echoed the European preference for pure form and surface while retaining a Wrightian complexity of space and structure.
Richard Neutra
Lovell House. 1929.
Los Angeles, California.

Like Schindler, Neutra left Vienna, worked for Wright, and settled in California. His masterpiece, the second modern house commissioned by Dr. Philip Lovell, used a steel frame filled with glass and stucco-covered metal panels in a composition thought to have influenced Wright himself.

Howe and Lescaze

The first skyscraper in the International Style rises without setbacks from a curved base. Cantilevered floors and ribbon windows make the Market Street elevation emphatically horizontal; exposed columns on the sides emphasize verticality.
William Lescaze
Architect's Townhouse. 1933.
New York City.
Stucco, originally painted white, glass block, and a thin metal column at the entrance gave this remodelled townhouse its European urbancy.

Rudolph Schindler
Oliver House. 1933.
Los Angeles, California.
In the thirties Schindler's architecture was related more to French Cubism than to Dutch or German movements in the arts. Sculptural effects of surface and mass took precedence, as in the skillfully-turned corner of this house.

Harwell Hamilton Harris and Craig Anderson
Pavilion House. 1936.
California.
Hanwell Hamilton Harris and Carl Anderson
Lowe House, 1934, Almadena, California.

Harris' first house, now altered beyond recognition, established a standard of excellence for a relaxed regional style, marked by sympathetic pitched roofs, walls extended to enclose gardens, and interiors equipped with sliding screens and mat floors.

Alden Dow

After training in Wright's atelier, Dow successfully adapted aspects of Wright's work: intricately modelled concrete block walls and strong roof lines, intelligible only in relation to the site, which they enhance.
Frank Lloyd Wright
Fallingwater (Kaufmann House). 1937.
Bear Run, Pennsylvania.

If the history of architecture had to be told through only 10 buildings, Fallingwater would be one of them—not because it is one of the three great houses of the twentieth century but because in no other building, even by Wright, do poetry and technique fuse in a vision so hypnotic. Terraces hovering in air, echoing the rock strata from which they spring; water and stone, mass, volume, surface, line; all poised in the energy of growth; Coleridge, could he have seen it, would have preferred Fallingwater to Xanadu.

John Yeon
Watzek House. 1937.
Portland, Oregon.

Indigenous or regional styles have not emerged as consequential aspects of modern architecture in the United States, but this house suggests that even without benefit of dogma a sympathy for unadorned essentials can produce high art.
Frank Lloyd Wright
Taliesin West. 1938-59.
Scottsdale, Arizona.

Wright's winter home and studio, planned with a 60/30 angle to repeat the slope of distant mountains, contrasts rough boulders set in concrete with walls and roofs of translucent canvas.

Walter Gropius
Architect's House. 1938.
Lincoln, Massachusetts.

After the Nazis closed the Bauhaus, the architecture and design school of which he was founder and first director, Walter Gropius became Dean of Architecture at Harvard University and substantially revised American education in architecture. His own house, and others designed with Marcel Breuer, adapted Germany's rigorous functionalism to New England's traditional wood frame structure.
William Ganster and William Pereira
Lake County Tuberculosis Sanatorium. 1939.
Waukegan, Illinois.

Although a sunshade added to the roof, poor planting, and inconsistent painting of the railings have blurred its original crisp lines, this building still reveals the direct, systematic planning and design that by 1939 had gained considerable acceptance in the United States, even for public or non-commercial buildings.

Frank Lloyd Wright
Herbert Jacobs House. 1937.
Madison, Wisconsin.

Subsequent owners have destroyed the character of this inexpensive house, the first in a series Wright called "Usonian" to describe their suitability for a servantless, classless democracy. Radiant heat, walls of plywood and board, and the ubiquitous car-port here make their first appearance.
Frank Lloyd Wright
Administration Building for
Racine, Wisconsin.

The brick shell encloses what may be Wright’s finest interior: a great room containing columns shaped like golf-tees, their flat pads supporting a roof of translucent glass tubes.

Philip L. Goodwin, Edward D. Stone
Museum of Modern Art. 1939.
New York City.

Warehouse construction, without permanent interior walls, was here first used for a museum. Translucent glass panels for galleries, ribbon windows for offices, and the curved, asymmetrically placed entrance canopy were compromises between real and imaginary functions. Remodelled and enlarged in 1964.
Edward D. Stone
Goodyear House, 1940.

As the forties began, glass walls, a flat roof, and thin metal columns, combined with brick originally whitewashed, gave this fine house its air of comfortable modernism.

Ludwig Mies van der Rohe
Holabird and Root, associated
Minerals and Metals Research Building, 1943.
Illinois Institute of Technology.
Chicago, Illinois.

A moment's contemplation of these facades reveals their uncanny refinement; but recent additions and poor maintenance have marred this and other I.I.T. buildings.
Ludwig Mies van der Rohe
Holabird and Root, associated
Alumni Memorial Building, 1946.
Illinois Institute of Technology, Chicago, Illinois.

On arriving in the United States before World War II, Mies became Director of Architecture at Illinois Institute of Technology (then called Armour Institute). His plan for a new campus, and the buildings he subsequently executed, established him as the acknowledged leader of a re-vitalized Chicago School. Typical of Mies' dedication to baukunst—the art of building—is this famous corner intersection of steel column and brick wall, in which the relation of each part is resolved with almost theological precision.

Marcel Breuer
Geller House, 1945.
Lawrence, Long Island, New York.

The first of Breuer's "bi-nuclear" houses places bedrooms in one unit, living areas in another—both connected by an entrance hall. Each unit can be expanded separately without destroying architectural coherence.
Richard Neutra
Palm Springs, California.
Flat roof planes, contrasts of texture, full height glass walls together with smaller windows (sometimes combined on the same elevation), and emphasis on selected aspects of structure all contribute to the thin, nervous elegance of Neutra’s later style.

Alvar Aalto: Perry, Shaw and Hepburn
Senior Student’s Dormitory. 1948.
Massachusetts Institute of Technology,
Cambridge, Mass.
The only major work in the United States by Finland's great architect, this building is a serpentine brick wall on one side; an angular montage of opposing masses on the other. Aalto anticipated—and like Le Corbusier helped create—a postwar enthusiasm for the restless, sometimes brutal forms that have rivalled Mies' architecture of structural purity.

Frank Lloyd Wright
The Broadacre City. 1934.
Springfield, Illinois.
A work of visionary proportions, this plan was conceived as an alternative to the automobile-oriented, Wolcott venerated city. In it, the car is banished from the living room. The champion of the house as a fortress in the face of the machine, Wright charts the return to a late medieval society, and the rediscovery of the individual man in a collective world.
Frank Lloyd Wright
Laboratory Tower for
S.C. Johnson & Son, Inc. 1949.
Racine, Wisconsin.

Added to the original building (1939), the tower stands in a walled court. Its floors are cantilevered from a central supporting shaft, which also houses utilities. Each laboratory is a duplex suite: the smaller mezzanine levels, being round in plan, do not touch the exterior wall of shimmering glass tubes. Artful reduction in scale at the tower's base increase the effectiveness of an already startling cantilever.

Philip Johnson
New Canaan, Connecticut.

This elegant steel pavilion is a single large room with walls entirely of glass. Living areas are defined by low walnut cabinets and by a brick cylinder containing a bathroom and, on its outside, a fireplace. The landscape is an essential part of the architecture and has been re-designed accordingly. An alternative to the view is provided by a separate brick guest house with few windows.
Charles Eames
Santa Monica, California.

Steel window and door units (ordered from the manufacturer's catalog) are combined to make a light, cage-like structure of Japanese delicacy. The metal frames are filled with transparent or translucent glass and panels of stucco.

Bruce Goff
Bavinger House. 1950.
Norman, Oklahoma.

A wall of sandstone encircles a steel pole, from which are suspended the roof, interior stairs, bowl-shaped seating areas, and a bridge. Goff's architecture of fantasy accurately reflects an aspect of the American temperament.

Ludwig Mies van der Rohe
Farnsworth House. 1950.
Plano, Illinois.

Mies's design for the Farnsworth House is a modern house for a single family, a basically rectangular structure with a deck cantilevered off one end.
Ludwig Mies van der Rohe
Farnsworth House. 1950.
Piano, Illinois.

Floor and roof planes, and an adjacent terrace, are suspended between steel columns. This is a glass house, but the eye is meant to read the white-painted steel structure rather than the glass walls. Perfect craftsmanship and fine materials enhance clarity of structure.

Eric Mendelsohn
Maimonides Health Center. 1950.
San Francisco, California.

Although hundreds of hospitals have been built in the United States, the high cost of equipment seldom leaves money for architectural distinction of any sort. A notable exception was this hospital whose cantilevered balconies overlooked a landscaped court, until the balconies were walled in and the building disfigured beyond recognition.

When it was completed this skyscraper pleased the eye with its mirror-like sheathing of green-tinted glass. It still pleases, though now perhaps more for its thin shape than its color.

Harrison and Abramovitz
Mitchell & Ritchey; Altenhof & Bown
Alcoa Building. 1952.
Pittsburgh, Pennsylvania.

Skeleton-frame skyscrapers are most often enclosed with non-structural walls of glass and masonry. This building uses prefabricated aluminum panels, each one containing 3 small windows. To increase their rigidity the panels are stamped in a pattern of triangular facets.

Eero Saarinen & Associates
Eero Saarinen & Associates
Smith, Hinchman & Grylls, associates
General Motors Technical Center. 1948-56.
Warren, Michigan.

The numerous buildings of this $100,000,000 research center are dispersed around a 22-acre artificial lake. Although the composition as a whole lacks a dominating element, ingenious technical details give each building the precision of industrial artifacts.

Ludwig Mies van der Rohe
Pace Associates and Holsman, Holsman,
Klekamp and Taylor, associated
Apartment Houses at 860 Lakeshore Drive. 1951.
Chicago, Illinois.

The steel skeletons of these twin apartment towers are embellished with steel mullions—vertical members holding the glass walls in place. More dramatically than his earlier work at I.I.T.'s campus, these and subsequent apartment houses by Mies have influenced architects around the world.
Skidmore, Owings & Merrill
Gordon Bunshaft, partner in charge of design
Lever House. 1952.
New York, New York.

This is the first post-war commercial skyscraper in the United States not to occupy the legal maximum of its expensive land. The thin, glass-walled slab has for its pedestal a floor of offices enclosing a small patio. An employees' cafeteria opens onto the roof garden.

Ludwig Mies van der Rohe
Illinois Institute of Technology,
Chicago, Illinois.

The roof is suspended from steel girders to leave the huge drafting room free of interior columns. Design studios and services are in the lower level, partly below ground. Proportion and clarity of detail here elevate structural techniques normally reserved for utilitarian engineering to the realm of art.

Ludwig Mies van der Rohe and Philip Johnson

[Diagram of architectural plans]
Ludwig Mies van der Rohe and Philip Johnson
Kahn and Jacobs, associated
Office Building, Joseph E. Seagram & Sons. 1958.
New York, New York.

Similar in detail to Mies' Chicago apartment
towers, the Seagram Building uses superior
materials: bronze sheathing for the steel frame,
amber-tinted glass, green marble, travertine,
and pink granite. A plaza of more than token
size maintains a dignified relation to the street.
A projecting spine and low wings at the rear
preserve the tower's slender 3:5 proportions,
and the masterly way these elements intersect
summarizes all that is known of the classic
architectural art of turning corners.

Edward D. Stone
New Delhi, India.

Offices and reception areas are ranged around
a rectangular pool, open to the sky but protected
from the sun by a suspended mesh of gold-
anodized aluminum. Outside windows are con-
cealed (and protected) by a grille of pierced
tile. This is perhaps the most beguiling of several
fine buildings commissioned by the Department
of State.
G. Thomas Harmon; Edward D. Stone, associate architect
Men's Dormitory. 1958.
University of South Carolina, Columbia, South Carolina.

One of a series of nearly identical blocks, this 7-story building is wrapped in a featureless grille of pierced tile. An idea developed by Stone for his New Delhi Embassy, and with ample precedent both historical and modern, is here carried to its logical conclusion.

Minoru Yamasaki and Associates
Ammann and Whitney, structural engineers
Wayne State University, Detroit, Michigan.

As prescriptions against ornament lose their authority, ornamental interpretations of structure reappear. Gothicizing facades, still intrinsically debatable, are in this instance convincingly executed with pre-fabricated concrete sections.
Minoru Yamasaki and Associates
Ammann and Whitney, structural engineers
Office Building for Reynolds Metals Co. 1959.
Southfield, Michigan.

Windows and other indications of scale are concealed behind a veil of gold-colored aluminum, here rationalized as protection against the sun.

Frank Lloyd Wright
New York, New York.

A spiral ramp was first studied by Wright in 1925 in a project for a round planetarium with exterior roads leading to a roof garden. The ramp was used by Wright to affirm structural and spatial continuity: walls and floors are aspects of a single surface convoluted like a shell. The Guggenheim offers the visitor an incomparably exhilarating interior (nearly impossible to photograph), and time and experience have improved its usefulness as a background for works of art.
Philip Johnson
New Harmony, Indiana.

Built to commemorate the founding of a Utopian community in 1825, the shrine is a shingled dome standing in a walled garden. The undulating shell suggests forms from both ancient history and modern engineering. Sculpture is by Jacques Lipchitz.

Philip Johnson
Utica, New York.

The roof is suspended from beams carried by two massive columns on each facade. Offices and an auditorium are below grade; galleries surround a large, skylighted central hall in a classical symmetry well suited to their purpose.

Marcel Breuer
Bethesda, Maryland. 1940.

A series of slender, pale monolithic forms in reinforced concrete contrast sharply with the rough-textured walls of the main building.
Marcel Breuer
University Heights, Bronx, New York.

Much of Breuer's recent work juxtaposes sculptural masses with buildings of more conventional shapes. The side elevation of this auditorium suggests the building's function; modest size prevents its strenuous configuration from becoming scale-less.

Edward Larrabee Barnes
Richard R. Moger, associate in charge
Concord, New Hampshire.

Simple variations of window and rooffline animate this building's "traditional" and still valid scale.
Louis I. Kahn
Dr. August E. Komendant, structural consultant
Keast & Hood, structural engineers
Richards Medical Research Building. 1961-63.
Laboratories are in 3 separate towers clustered around a fourth tower for utilities. Fire stairs or ducts are in brick towers flanking each laboratory unit; classroom and laboratory units at the left were part of the original scheme but added at a later date. Kahn's effort to make architectural form coincide with real and symbolic functions has profoundly impressed students and influenced his peers—more perhaps than any other architectural philosophy since Mies' work in the forties.

Herb Greene
Norman, Oklahoma.
Shingles on a wood frame contribute to the unnerving insectile quality of this house-art-sculpture.
Eero Saarinen and Associates
Kennedy International Airport,
Long Island, New York.

Forms borrowed from engineering are here amplified for expressive purposes. Essentially a sculpture to walk in, it offers travellers making their way through it into the arched tube-tunnel, which leads to waiting airplanes, a variety of spaces more interesting than the flight itself.

Skidmore, Owings and Merrill
Colorado Springs, Colorado.

A gigantic paved platform modeled out of the site carries 7 buildings. The Dining Hall has 2 acres of roof supported by 16 perimeter columns; the Cadet Quarters building is 1,341 feet long.
Skidmore, Owings and Merrill
Colorado Springs, Colorado.

The chapel's aluminum-clad tetrahedral frames deliberately contrast with other buildings only in form, not in their use of repeated modular elements. The program inflicted on the architect made the chapel the dominating element of the composition, even though this required accommodating simultaneous services for 3 faiths in one building: Protestants on top, Jews and Catholics in the basement.

Bertrand Goldberg Associates
Apartment Houses ("Marina City"). 1964.
Chicago, Illinois.

Cantilevered semi-circular balconies give these twin concrete apartment towers their delicate texture. Garage on lower floors is a spiral ramp. Project includes business buildings and a boat basin to increase daytime use of the site.
Harrison and Abramovitz
Office Building for Phoenix Mutual
Life Insurance Co. 1963.
Hartford, Connecticut.
Glass-walled skyscrapers are usually four-sided boxes. This one has curved facades terminating in razor-sharp prongs. Distorted reflections and transparent corners produce the illusion of surface without mass.

Paul Rudolph
Yale University, New Haven, Connecticut.
Various elements of the plan provide opportunities for the display of intersecting vertical and horizontal masses, without disclosing that the interior comprises balcony workrooms opening onto double-height halls. Concrete walls are heavily striated both inside and out.
Paul Rudolph
Parking Garage for City of New Haven. 1962.
New Haven, Connecticut.
Skillful modeling of its piers and parapets, and its great length, give this utilitarian structure of poured concrete the splendor of a Roman viaduct.

Geddes, Brecher, Qualls & Cunningham
David Bloom and Dr. A. E. Komendant, structural engineers
Police Headquarters. 1962.
Franklin Square, Philadelphia, Pa.
Precast concrete elements are here used with great technical elegance. Windows are in ladderlike 3-story high structural frames, resting on a cantilevered platform. Variety of spaces, shadows, and perspectives produced by the curved plan make the building impressive but not intimidating.

Louis I. Kahn
Museum of Modern Art. 1940.
New York, N.Y.

57
58
59
Louis I. Kahn
Keast & Hood, structural engineers
First Unitarian Church. 1962.
Rochester, New York.

Four clerestory windows rise above the roof to illuminate the corners of a large rectangular room for religious services. Classrooms and other facilities are wrapped around the perimeter: their deep window frames, like the clerestories, derive from the effort to modulate light.

Sert, Jackson & Gourley
Housing for Married Students
Harvard University, Cambridge, Mass.

Jose Luis Sert has championed the architecture of Le Corbusier in the United States: in this recent project he has applied valuable lessons and demonstrated some new ones of his own. Three 21 storey towers are successfully grouped with 5 and 7 storey blocks arranged to form a clearly defined sequence of outdoor spaces. An important innovation is the irregular skyline of the towers, achieved by juxtaposing different kinds of apartment layouts.
Skidmore, Owings & Merrill
Gordon Bunshaft, partner in charge of design.
Bulnecke Rare Book and Manuscript Library. 1963.
Yale University, New Haven, Connecticut.
Rare books are housed in a glass-walled, air conditioned stack. The building's outer wall is a structural frame filled with thin slabs of translucent marble. Offices and other facilities are below ground, opening on a sunken patio.

Paolo Soleri
Scottsdale, Arizona.
For many years Soleri has been working on the design of a vast city he would like to see built in the Arizona desert. Many of its facilities would be designed as underground caverns; in his own house he has studied the forms possible to an architecture modeled directly into the earth itself.

I. M. Pei and Associates
Georgia State Capitol. 1965.
Atlanta, Georgia.
I. M. Pei and Associates
Society Hill apartments (1964) and Town houses (1963).
Pittsburgh, Pennsylvania.
These tall concrete apartment towers use a small, repetitive module corresponding to window widths, but transfer weight to more widely spaced columns at the base. Row houses, part of the same project, are unified by continuous windows for bedrooms on the top floor.

Eero Saarinen and Associates
Deere and Company Administrative Center. 1964.
Moline, Illinois
Set in open country, this structure uses a new steel alloy, called Cor-ten, which develops a rust-colored protective coating after seven years. Steel beams suspended in front of the glass walls provide a decorative sunshade.
Philip Johnson Associates
New York State Theater, Lincoln Center. 1964.
New York, New York.

The promenade gallery is the largest public room
built in this country for many years. The architect
sought to give it a richness of material and decora-
tion appropriate to a theater. The sculptures
are marble enlargements of originals by Elie
Nadelman.

Curtis and Davis
Office Building for International
Business Machines. 1964.
Pittsburgh, Pennsylvania.

Each facade of this office building is a steel
truss supported by two columns. Without ren-
nouncing a skeleton frame system, the architects
have managed to make the wall itself a load-
bearing element.

Skidmore, Owings & Merrill
Office Building for
Office Building for

...
Skidmore, Owings & Merrill
Office Building for
Businessmen's Assurance Co. 1964.
Kansas City, Missouri.

The conventional rectilinear skeleton frame, here executed in steel and concrete with 36' spans, is revealed with startling clarity because the glass walls are set well back. It is difficult to imagine any further clarification of the system.

C. F. Murphy Associates, supervising architects
Skidmore, Owings & Merrill; Loeb, Schlossman & Bennett, associate architects
Chicago Civic Center. 1963.
Chicago, Illinois.

Steel spans measuring 48 x 87' are the largest in any office building to date. The structure is sheathed with Cor-ten steel which will eventually turn dark brown. Technological advances are used to modify and enliven, with a new sense of proportion, Chicago's traditional building type.
The abstract patterns possible with concrete block or brick have often been studied as a suitable form of decoration in modern architecture. In this building, photographed in construction, all exterior walls are built up of concrete block arranged in a pattern whose intricacy suggests both Mayan architecture and computer diagrams.